Parameter Estimation of Stochastic Differential Equation

نویسندگان

  • aRifaH baHaR
  • noRHayati RoSli
چکیده

Non-parametric modeling is a method which relies heavily on data and motivated by the smoothness properties in estimating a function which involves spline and non-spline approaches. Spline approach consists of regression spline and smoothing spline. Regression spline with Bayesian approach is considered in the first step of a two-step method in estimating the structural parameters for stochastic differential equation (SDE). The selection of knot and order of spline can be done heuristically based on the scatter plot. To overcome the subjective and tedious process of selecting the optimal knot and order of spline, an algorithm was proposed. A single optimal knot is selected out of all the points with exception of the first and the last data which gives the least value of Generalized Cross Validation (GCV) for each order of spline. The use is illustrated using observed data of opening share prices of Petronas Gas Bhd. The results showed that the Mean Square Errors (MSE) for stochastic model with parameters estimated using optimal knot for 1,000, 5,000 and 10,000 runs of Brownian motions are smaller than the SDE models with estimated parameters using knot selected heuristically. This verified the viability of the two-step method in the estimation of the drift and diffusion parameters of SDE with an improvement of a single knot selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Simulating and Forecasting OPEC Oil Price Using Stochastic Differential Equations

The main purpose of this paper is to provide a quantitative analysis to investigate the behavior of the OPEC oil price. Obtaining the best mathematical equation to describe the price and volatility of oil has a great importance. Stochastic differential equations are one of the best models to determine the oil price, because they include the random factor which can apply the effect of different ...

متن کامل

A least square-type procedure for parameter estimation in stochastic differential equations with additive fractional noise

We study a least square-type estimator for an unknown parameter in the drift coefficient of a stochastic differential equation with additive fractional noise of Hurst parameter H > 1/2. The estimator is based on discrete time observations of the stochastic differential equation, and using tools from ergodic theory and stochastic analysis we derive its strong consistency.

متن کامل

On sequential parameter estimation for some linear stochastic differential equations with time delay

We consider the parameter estimation problem for the scalar di usion type process described by the stochastic equation with time delay

متن کامل

On sequential parameter estimation for some linear stochastic differential equations with time delay

We consider the parameter estimation problem for the scalar di usion type process described by the stochastic equation with time delay

متن کامل

Numerical Solution of Heun Equation Via Linear Stochastic Differential Equation

In this paper, we intend to solve special kind of ordinary differential equations which is called Heun equations, by converting to a corresponding stochastic differential equation(S.D.E.). So, we construct a stochastic linear equation system from this equation which its solution is based on computing fundamental matrix of this system and then, this S.D.E. is solved by numerically methods. Moreo...

متن کامل

Stochastic Gradient Descent in Continuous Time

We consider stochastic gradient descent for continuous-time models. Traditional approaches for the statistical estimation of continuous-time models, such as batch optimization, can be impractical for large datasets where observations occur over a long period of time. Stochastic gradient descent provides a computationally efficient method for such statistical learning problems. The stochastic gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012